17.解:当时..则 为奇函数. . . 综上: 查看更多

 

题目列表(包括答案和解析)

已知函数是定义在上的奇函数,当时,,则不等式的解集是    

查看答案和解析>>

已知函数是定义在上的奇函数,当时,,则不等式的解集是    

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

     (ⅰ)求当时,的最小值;

     (ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

如图,某小区准备绿化一块直径为的半圆形空地,外的地方种草,的内接正方形为一水池,其余地方种花.若 ,设的面积为,正方形的面积为,将比值称为“规划合理度”.

(1)试用,表示.

(2)当为定值,变化时,求“规划合理度”取得最小值时的角的大小.

【解析】第一问中利用在ABC中  

设正方形的边长为  则  然后解得

第二问中,利用  而

借助于 为减函数 得到结论。 

(1)、 如图,在ABC中  

 

设正方形的边长为  则 

      = 

(2)、  而  ∵0 <  < ,又0 <2 <,0<t£1 为减函数   

时 取得最小值为此时 

 

查看答案和解析>>


同步练习册答案