12.定义在区间的奇函数f在的图像与f(x)的图像重合.设.给出下列不等式 ① ② ③ ④ 其中成立的是 ②与 ③ , ②与 ④. 答 题 栏 查看更多

 

题目列表(包括答案和解析)

定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图像与f(x)的图像重合,设a>b>0,给出下列不等式: 
①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b) 
③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)

其中成立的是


  1. A.
    ①与④
  2. B.
    ②与③
  3. C.
    ①与③
  4. D.
    ②与④

查看答案和解析>>

定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图像与f(x)的图像重合,设ab>0,给出下列不等式,其中正确不等式的序号是(    )

f(b)-f(-a)>g(a)-g(-b)  ②f(b)-f(-a)<g(a)-g(-b

f(a)-f(-b)>g(b)-g(-a)  ④f(a)-f(-b)<g(b)-g(-a)

A.①③               B.②④          C.①④                 D.②③

查看答案和解析>>

定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等关系.

①f(b)-f(-a)>g(a)-g(-b);

②f(b)-f(-a)<g(a)-g(-b);

③f(a)-f(-b)>g(b)-g(-a);

④f(a)-f(-b)<g(b)-g(-a).

其中正确的是________.

查看答案和解析>>

定义在R上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,下列给出的不等式中成立的是(    )

①f(b)-f(-a)>g(a)-g(-b)  ②f(b)-f(-a)<g(a)-g(-b)  ③f(a)-f(-b)>g(b)-g(-a)  ④f(a)-f(-b)<g(b)-g(-a)

A.②④               B.②③                C.①④              D.①③

查看答案和解析>>

13、定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).
其中正确不等式的序号是
①③

查看答案和解析>>


同步练习册答案