(本题满分10分.其中第1小题3分.第2小题3分.第3小题4分) 已知函数.令. (1)求函数的值域, (2)任取定义域内的5个自变量.根据要求计算并填表,观察表中数据间的关系.猜想一个等式并给予证明, - - - (3)如图.已知在区间的图像.请据此在该坐标系中补全函数在定义域内的图像.并在同一坐标系中作出函数的图像. 请说明你的作图依据. B卷 查看更多

 

题目列表(包括答案和解析)

(本题满分10分,其中第1小题5分,第二小题5分)

规定含污物体的清洁度为:。现对1个单位质量的含污物体进行清洗,清洗前其清洁度为0.8,要求洗完后的清洁度是0.99。有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗。该物体初次清洗后受残留水等因素影响,其质量变为a(1≤a≤3)。设用x单位质量的水初次清洗后的清洁度是),用y质量的水第二次清洗后的清洁度是,其中c)是该物体初次清洗后的清洁度。

(Ⅰ)分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;

(Ⅱ)若采用方案乙,当a为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论a取不同数值时对最少总用水量多少的影响。

查看答案和解析>>

(本题满分10分,其中第1小题5分,第二小题5分)

已知是定义域为R的奇函数,当x∈[0,+∞)时,

(Ⅰ)写出函数的解析式;

(Ⅱ)若方程恰有3个不同的解,求a的取值范围。

查看答案和解析>>

(本题满分20分,其中第1小题4分,第2小题6分,第3小题10分)

已知是直线上的个不同的点(均为非零常数),其中数列为等差数列.

(1)求证:数列是等差数列;

(2)若点是直线上一点,且,求证:

(3) 设,且当时,恒有都是不大于的正整数, 且).试探索:在直线上是否存在这样的点,使得成立?请说明你的理由.

查看答案和解析>>

(本题满分20分,其中第1小题4分,第2小题6分,第3小题10分.)

平面直角坐标系中,已知,…,是直线上的个点(均为非零常数).

(1)若数列成等差数列,求证:数列也成等差数列;

(2)若点是直线上一点,且,求的值;

(3)若点满足,我们称是向量,…,的线性组合,是该线性组合的系数数列.

是向量,…,的线性组合时,请参考以下线索:

① 系数数列需满足怎样的条件,点会落在直线上?

② 若点落在直线上,系数数列会满足怎样的结论?

③ 能否根据你给出的系数数列满足的条件,确定在直线上的点的个数或坐标?

试提出一个相关命题(或猜想)并开展研究,写出你的研究过程.【本小题将根据你提出的命题(或猜想)的完备程度和研究过程中体现的思维层次,给予不同的评分】

查看答案和解析>>

(本题满分16分,第(1)小题6分,第(2)小题10分)

为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡)。现有一个由36名游客组成的旅游团到上海参观旅游,其中是境外游客,其余是境内游客。在境外游客中有持金卡,在境内游客中有持银卡。.    

(1)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;

(2)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望

查看答案和解析>>


同步练习册答案