已知.则值域是 ,单调增区间是 . 查看更多

 

题目列表(包括答案和解析)

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

下列叙述正确的序号是             

(1)对于定义在R上的函数,若,则函数不是奇函数;

(2) 定义在上的函数,在区间上是单调增函数,在区间上也是单调增函数,则函数上是单调增函数;

(3) 已知函数的解析式为=,它的值域为,那么这样的函数有9个;

(4)对于任意的,若函数,则

 

查看答案和解析>>

下列叙述正确的序号是             
(1)对于定义在R上的函数,若,则函数不是奇函数;
(2) 定义在上的函数,在区间上是单调增函数,在区间上也是单调增函数,则函数上是单调增函数;
(3) 已知函数的解析式为=,它的值域为,那么这样的函数有9个;
(4)对于任意的,若函数,则

查看答案和解析>>

下列叙述正确的序号是             
(1)对于定义在R上的函数,若,则函数不是奇函数;
(2) 定义在上的函数,在区间上是单调增函数,在区间上也是单调增函数,则函数上是单调增函数;
(3) 已知函数的解析式为=,它的值域为,那么这样的函数有9个;
(4)对于任意的,若函数,则

查看答案和解析>>

已知函数f(x)=为常数。

(I)当=1时,求f(x)的单调区间;

(II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。

【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=,则f(x)的定义域是然后求导,,得到由,得0<x<1;由,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则在区间[1,2]上恒成立,即即,或在区间[1,2]上恒成立,解得a的范围。

(1)当a=1时,f(x)=,则f(x)的定义域是

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函数,在(1,上是减函数。……………6分

(2)。若函数f(x)在区间[1,2]上为单调函数,

在区间[1,2]上恒成立。∴,或在区间[1,2]上恒成立。即,或在区间[1,2]上恒成立。

又h(x)=在区间[1,2]上是增函数。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或

 

查看答案和解析>>


同步练习册答案