3.对于数列{an},取bn=an+1-an(n),若{bn}是公差为6的数列.试用a1, b1和n表示an. 查看更多

 

题目列表(包括答案和解析)

数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),数列{bn}的前n项和为Sn
(1)若数列{an}的公差d等于首项a1,试用数学归纳法证明:对于任意n∈N*,都有Sn=
b1an+34d

(2)若数列{an}满足:3a5=8a12>0,试问n为何值时,Sn取得最大值?并说明理由.

查看答案和解析>>

数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),数列{bn}的前n项和为Sn
(1)若数列{an}的公差d等于首项a1,试用数学归纳法证明:对于任意n∈N*,都有Sn=数学公式
(2)若数列{an}满足:3a5=8a12>0,试问n为何值时,Sn取得最大值?并说明理由.

查看答案和解析>>

数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),数列{bn}的前n项和为Sn
(1)若数列{an}的公差d等于首项a1,试用数学归纳法证明:对于任意n∈N*,都有Sn=
(2)若数列{an}满足:3a5=8a12>0,试问n为何值时,Sn取得最大值?并说明理由.

查看答案和解析>>

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.

查看答案和解析>>

设数列{an}的前n项和为Sn,其中an≠0,a1为常数,且-2a1,Sn,2an+1成等差数列.
(1)当a1=2时,求{an}的通项公式;
(2)当a1=2时,设bn=log2 (an2)-1,若对于n∈N*,
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
<k恒成立,求实数k的取值范围;
(3)设cn=Sn+1,问:是否存在a1,使数列{cn}为等比数列?若存在,求出a1的值,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案