已知.(0.2).则角等于: A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知:一动圆过B(1,0)且与圆A:x2+y2+2x+4λ-3=0(0<λ<1)相切.
(1)证明动圆圆心P的轨迹是双曲线,并求其方程;
(2)过点B作直线l交双曲线右支于M、N两点,是否存在λ的值,使得△AMN成为以∠ANM为直角的等腰三角形,若存在则求出λ的值,若不存在则说明理由.

查看答案和解析>>

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于A、B两点.若△ABF1是以B为顶点的等腰三角形,且△AF1F2,△BF1F2的面积之比S△AF1F2S△BF1F2=2:1,则双曲线的离心率为
 

查看答案和解析>>

已知:一动圆过B(1,0)且与圆A:x2+y2+2x+4λ-3=0(0<λ<1)相切.
(1)证明动圆圆心P的轨迹是双曲线,并求其方程;
(2)过点B作直线l交双曲线右支于M、N两点,是否存在λ的值,使得△AMN成为以∠ANM为直角的等腰三角形,若存在则求出λ的值,若不存在则说明理由.

查看答案和解析>>

已知F1、F2分别是双曲线L:(a>0,b>0)的左、右焦点,过点F1作斜率为2的直线l交双曲线L的左支上方于点P,若∠F1PF2为直角,则此双曲线的离心率等于   

查看答案和解析>>

已知:一动圆过B(1,0)且与圆A:x2+y2+2x+4λ-3=0(0<λ<1)相切.
(1)证明动圆圆心P的轨迹是双曲线,并求其方程;
(2)过点B作直线l交双曲线右支于M、N两点,是否存在λ的值,使得△AMN成为以∠ANM为直角的等腰三角形,若存在则求出λ的值,若不存在则说明理由.

查看答案和解析>>


同步练习册答案