题目列表(包括答案和解析)
给出下列命题:
(1)命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题
(2)命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题
(3)命题“若a>b>0,则>>0”的逆否命题
(4)“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题
其中真命题的序号为__________.
定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.
(1)求证:方程f(x)=0有且只有一个实根;
(2)若a>b>c>1,且a、b、c成等差数列,求证:;
(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:
已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)在(1)的条件下,是否存在m∈R,使池f(m)=- a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由;
(3)若 对,方程有2个不等实根,.
(本题满分14分)已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)若 对,方程有2个不等实根,;
(3)在(1)的条件下,是否存在m∈R,使f(m)=- a成立时,f(m+3)为正数,若
存在,证明你的结论,若不存在,说明理由.
(本题满分14分)已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)若 对,方程有2个不等实根,;
(3)在(1)的条件下,是否存在m∈R,使f(m)=- a成立时,f(m+3)为正数,若
存在,证明你的结论,若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com