证明:在(0.2]上为减函数. 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;

(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;

(Ⅲ)当x∈(0,e]时,证明:

【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,

假设存在实数a,使有最小值3,利用,对a分类讨论,进行求解得到a的值。

第三问中,

因为,这样利用单调性证明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)见解析

 

查看答案和解析>>

已知函数有如下性质:如果常数,那么该函数在(0,)上减函数,在是增函数。

(1)如果函数的值域为,求的值;

(2)研究函数(常数)在定义域的单调性,并说明理由;

(3)对函数(常数)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数

(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论)。

查看答案和解析>>

已知函数有如下性质:如果常数,那么该函数在(0,)上减函数,在是增函数。
(1)如果函数的值域为,求的值;
(2)研究函数(常数)在定义域的单调性,并说明理由;
(3)对函数(常数)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论)。

查看答案和解析>>

函数y=f(x)在区间(0,+∞)内可导,导函数f'(x)是减函数,且f′(x)>0。设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))的切线方程,并设函数g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)证明:当x0∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥上恒成立,其中a、b为实数,求b的取值范围及a与b所满足的关系。

查看答案和解析>>

函数y=f(x)在区间(0,+∞)内可导,导函数f'(x)是减函数,且f′(x)>0。设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))的切线方程,并设函数g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)证明:当x0∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥上恒成立,其中a、b为实数,求b的取值范围及a与b所满足的关系。

查看答案和解析>>


同步练习册答案