题目列表(包括答案和解析)
x2-1 |
x-1 |
已知点为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点
,使得
总能被
轴平分
【解析】第一问中设为曲线
上的任意一点,则点
在圆
上,
∴,曲线
的方程为
第二问中,设点的坐标为
,直线
的方程为
, ………………3分
代入曲线的方程
,可得
∵,∴
确定结论直线与曲线
总有两个公共点.
然后设点,
的坐标分别
,
,则
,
要使被
轴平分,只要
得到。
(1)设为曲线
上的任意一点,则点
在圆
上,
∴,曲线
的方程为
. ………………2分
(2)设点的坐标为
,直线
的方程为
, ………………3分
代入曲线的方程
,可得
,……5分
∵,∴
,
∴直线与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点,
的坐标分别
,
,则
,
要使被
轴平分,只要
,
………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
当时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点,使得
总能被
轴平分
A.①③ | B.②④ | C.②③ | D.①④ |
已知双曲线C的中心是原点,右焦点为F,一条渐近线m:
,设过点A
的直线l的方向向量
。
(1) 求双曲线C的方程;
(2) 若过原点的直线,且a与l的距离为
,求K的值;
(3) 证明:当时,在双曲线C的右支上不存在点Q,使之到直线l的距离为
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com