11.数列{an}的通项公式为an=2n+1. 当n≥2时.b2=ab1=aa1=a3=7. b3=ab2=a7=2×7×1=15. b4=ab3=a15=2×15+1=31. b5=ab4=a31=2×31+1=63. 查看更多

 

题目列表(包括答案和解析)

数列{an}的通项公式为an=
1
(n+1)2
(n∈N*),设f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表达式;
(3)数列{bn}满足b1=1,bn+1=2f(n)-1,它的前n项和为g(n),求证:当n∈N*时,g(2n)-
n
2
≥1.

查看答案和解析>>

设数列{an}的通项公式为an=2n,数列{bn}满足2n2-(t+bn)n+
32
bn=0
,(t∈R,n∈N*).
(1)试确定实数t的值,使得数列{bn}为等差数列;
(2)当数列{bn}为等差数列时,对每个正整数k,在ak和ak+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

设数列{an}的通项公式为an=2n,数列{bn}满足2n2-(t+bn)n+
3
2
bn=0
,(t∈R,n∈N*).
(1)试确定实数t的值,使得数列{bn}为等差数列;
(2)当数列{bn}为等差数列时,对每个正整数k,在ak和ak+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

数列{an}的通项公式为an=
1
(n+1)2
(n∈N*),设f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表达式;
(3)数列{bn}满足b1=1,bn+1=2f(n)-1,它的前n项和为g(n),求证:当n∈N*时,g(2n)-
n
2
≥1.

查看答案和解析>>

已知数列{an}的通项公式为an=2n-37,则当Sn取最小值时,项数n为

[  ]

A.1

B.17

C.18

D.19

查看答案和解析>>


同步练习册答案