12.an+1=an2-1.a1=1.则a2=a12-1=0.a3=a22-1=-1.a4=a32-1=(-1)2-1=0.a5=a42-1=-1. 查看更多

 

题目列表(包括答案和解析)

(2012•石景山区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

(2013•黄浦区二模)已知数列{an}具有性质:①a1为整数;②对于任意的正整数n,当an为偶数时,an+1=
an
2
;当an为奇数时,an+1=
an-1
2

(1)若a1为偶数,且a1,a2,a3成等差数列,求a1的值;
(2)设a1=2m+3(m>3且m∈N),数列{an}的前n项和为Sn,求证:Sn2m+1+3
(3)若a1为正整数,求证:当n>1+log2a1(n∈N)时,都有an=0.

查看答案和解析>>

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,且an+1=2an2+2an,其中n为正整数.
(1)设bn=2an+1,证明:数列{bn}是“平方递推数列”,且数列{lgbn}为等比数列;
(2)设(1)中“平方递推数列”{bn}的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;
(3)记cn=
log
Tn
2an+1
,求数列{cn}的前n项之和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>

4、在数列{an}中,a1=1,an+1=an2-1则此数列的前4项之和为(  )

查看答案和解析>>

已知数列{an}中,a1=1,an+1=an2-1(n≥1,n∈N+)则a1+a2+a3+a4+a5=(  )

查看答案和解析>>


同步练习册答案