求证: 19 . 已知. 求证: 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ln(1+x2)+ax.(a≤0)
(1)若f(x)在x=0处取得极值,求a的值;
(2)讨论f(x)的单调性;
(3)证明:(1+
1
9
)(1+
1
81
)…(1+
1
32n
)<
e
(n∈N*,e
为自然对数的底数)

查看答案和解析>>

已知函数y=f(x)是定义在R上的函数.
(1)若函数y=f(x)满足:f(xy)=f(x)+f(y),f(
1
3
)=1

①求f(1),f(
1
9
)
的值,
②若函数y=f(x)是定义域为R+的减函数,且f(x)+f(2-x)<2,求x的取值范围.
(2)若函数y=f(x)对一切x∈R满足f(x+2)=-f(x),求证:f(x)是周期函数;
(3)若函数y=f(x)对一切x、y∈R满足f(x+y)=f(x)+f(y),求证:f(x)是奇函数.

查看答案和解析>>

已知数集序列{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n个集合有n个元素,每一个集合都由连续正奇数组成,并且每一个集合中的最大数与后一个集合中的最小数是连续奇数.
(1)求第n个集合中各数之和Sn的表达式;
(2)设n是不小于2的正整数,f(n)=
n
i=1
1
3Si
,求证:n+
n-1
i=1
f(i)=nf(n)

查看答案和解析>>

已知集合M={1,2,3,…,n}(n∈N*),若集合数学公式,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

已知函数f(x)=ln(1+x2)+ax.(a≤0)
(1)若f(x)在x=0处取得极值,求a的值;
(2)讨论f(x)的单调性;
(3)证明:(1+
1
9
)(1+
1
81
)…(1+
1
32n
)<
e
(n∈N*,e
为自然对数的底数)

查看答案和解析>>


同步练习册答案