题目列表(包括答案和解析)
图2-5-20
(1)求△ABC的边AB上的高h.
(2)设DN=x,当x取何值时,水池DEFN的面积最大?
(3)实际施工时,发现在AB上距B点1.85米的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果为保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.
|
|
π |
2 |
π |
4 |
a2+b2 |
c2+d2 |
(ac+bd)(ad+bc) |
x2 |
a2 |
y2 |
b2 |
a2+b2 |
5 |
2 |
2 |
2 |
M1F1 |
M1F |
3 |
MN |
(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径取何值时,取得最大值?并求出该
最大值(结果精确到0.01平方米);
(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线与所在异面直线所成角的大小(结果用反三角函数表示)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com