题目列表(包括答案和解析)
已知函数f(x)=x2+(ae-4)x+2lnx,g(x)=ax(2-lnx)(其中e为自然对数的底数,常数a≠0).
(1)若对任意x>0,g(x)≤1恒成立,求正实数a的取值范围;
(2)在(1)的条件下,当a取最大值时,试讨论函数f(x)在区间[,e]上的单调性;
(3)求证:对任意的n∈N*,不等式ln<n3-n2+n成立.
有下列命题:
①已知a,b为实数,若a2-4b≥0,则x2+ax+b≤0有非空实数解集.
②当2m-1>0时,如果>0,那么m>-4.
③若a,b是整数,则关于x的方程x2+ax+b=0有两整数根.
④若a、b都不是整数,则方程x2+ax+b=0无两整数根.
⑤当2m-1>0时,如果m≤-4,则≤0.
⑥已知a,b为实数,若x2+ax+b≤0有非空实数解,则a2-4b≥0.
⑦若方程x2+ax+b=0没有两整数根,则a不是整数或b不是整数.
⑧已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0的解集为空集.
⑨当2m-1>0时,如果m>-4,则>0.
用序号表示上述命题间的关系(例(1)与(9)互为逆否命题):其中(1)___________是互为逆命题;(2)___________互为否命题;(3)___________互为逆否命题
①已知a,b为实数,若a2-4b≥0,则x2+ax+b≤0有非空实数解集.
②当2m-1>0时,如果>0,那么m>-4.
③若a,b是整数,则关于x的方程x2+ax+b=0有两整数根.
④若a、b都不是整数,则方程x2+ax+b=0无两整数根.
⑤当2m-1>0时,如果m≤-4,则≤0.
⑥已知a,b为实数,若x2+ax+b≤0有非空实数解,则a2-4b≥0.
⑦若方程x2+ax+b=0没有两整数根,则a不是整数或b不是整数.
⑧已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0的解集为空集.
⑨当2m-1>0时,如果m>-4,则>0.
用序号表示上述命题间的关系(例(1)与(9)互为逆否命题):其中(1)___________是互为逆命题;(2)___________互为否命题;(3)___________互为逆否命题
设函数是定义域为R的奇函数.
(1)求k值;
(2)(文)当0<a<1时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的t的取值范围;
若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com