53.求证:csc6β-ctg6β=1+3csc2βctg2β 证:csc6β-ctg6β=(csc2β-ctg2β)(csc4β+csc2βctg2β+ctg4β)=csc4β-2csc2βctg2β+ctg4β+3csc2βctg2β =(csc2β-ctg2β)2+3csc2βctg2β=1+3csc2βctg2β. 查看更多

 

题目列表(包括答案和解析)

选修4-1几何证明
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE.
求证:∠E=∠C.

查看答案和解析>>

设0<α<π<β<2π,向量
a
=(1,-2),
b
=(2cosα,sinα),
c
=(sinβ,2cosβ),
d
=(cosβ,-2sinβ)

(1)若
a
b
,求α;
(2)若|
c
+
d
|=
3
,求sinβ+cosβ的值;
(3)若tanαtanβ=4,求证:
b
c

查看答案和解析>>

精英家教网t∈R,且t∈(0,10),由t确定两个任意点P(t,t),Q(10-t,0).
(1)直线PQ是否能通过下面的点M(6,1),点N(4,5);
(2)在△OPQ内作内接正方形ABCD,顶点A、B在边OQ上,顶点C在边PQ上,顶点D在边OP上.
①求证:顶点C一定在直线y=
12
x上.
②求下图中阴影部分面积的最大值,并求这时顶点A、B、C、D的坐标.

查看答案和解析>>

(2013•辽宁)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C-PB-A的余弦值.

查看答案和解析>>

已知a,b,c∈R+,求证:
a
b+c
+
b
a+c
+
c
a+b
3
2

查看答案和解析>>


同步练习册答案