15.在平面直角坐标系中.点P关于x轴的对称点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,O为坐标原点,已知两点M (1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(1)求证:
OA
OB

(2)在x轴上是否存在一点P (m,0),使得过点P任作抛物线的一条弦,并以该弦为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中,动点P的坐标(x,y)满足方程组:
x=(2k+2-k)cosθ
y=(2k-2-k)sinθ

(1)若k为参数,θ(2)为常数(θ≠
2
,k∈Z
(3)),求P点轨迹的焦点坐标.
(4)若θ(5)为参数,k为非零常数,则P点轨迹上任意两点间的距离是否存在最大值,若存在,求出最大值;若不存在,说明理由.

查看答案和解析>>

16、在平面直角坐标系中,点集A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,,3x-4y≥0},
则(1)点集P={(x,y)|x=x1+3,y=y1+1,(x1,y1)∈A}所表示的区域的面积为
π

(2)点集Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为
18+π

查看答案和解析>>

在平面直角坐标系中,已知三点A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圆为圆,椭圆
x2
4
+
y2
2
=1
的右焦点为F.
(1)求圆M的方程;
(2)若点P为圆M上异于A、B的任意一点,过原点O作PF的垂线交直线x=2
2
于点Q,试判断直线PQ与圆M的位置关系,并给出证明.

查看答案和解析>>

在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.若C(x,y)到点A(1,3)、B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤10、0≤y≤10,则所有满足条件的点C的轨迹的长度之和为(  )
A、
13
B、5(
2
+1)
C、3
D、
26
2

查看答案和解析>>


同步练习册答案