设{an}为等差数列.则下列数列中.成等差数列的个数为 ①{an2} ②{pan} ③{pan+q} ④{nan}(p.q为非零常数) A.1 B.2 C.3 D.4 解析:{pan}.{pan+q}的公差为pd(设{an}公差为d),而{nan}.{an2}不符合等差数列定义. 答案:B 查看更多

 

题目列表(包括答案和解析)

设{an}为等差数列,则下列数列中,成等差数列的个数为(  )
①{an2} ②{pan} ③{pan+q} ④{nan}(p、q为非零常数)

查看答案和解析>>

设{an}为等差数列,则下列数列中,成等差数列的个数为
①{an2};②{pan};③{pan+q};④{nan}(p、q为非零常数)
[     ]
A.1
B.2
C.3
D.4

查看答案和解析>>

将数列{an}中的所有项按每组比前一组项数多一项的规则分组如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一组的第1个数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*
(I)求证:数列{
1
Sn
}成等差数列,并求出数列{bn}的通项公式;
(Ⅱ)若从第2组起,每一组中的数自左向右均构成等比数列,且公比q为同一个正数,当a18=-
2
15
时,求公比q的值;   
(Ⅲ)在(Ⅱ)的条件下,记每组中最后一数a1,a3,a6,a10,…构成的数列为{cn},设dn=n2(n-1)•cn,求数列{dn}的前n项和Tn

查看答案和解析>>

设数列{}的前n项和为Sn(n∈N?),关于数列{}有下列四个命题:

(1)若{}既是等差数列又是等比数列,则an=an+1(n∈N*);

(2)若Sn=An2+Bn(A,B∈R,A、B为常数),则{}是等差数列;

(3)若Sn=1-(-1)n,则{}是等比数列;

(4)若{}是等比数列,则Sm,S2m-Sm,S3m-S2m(m∈N*)也成等比数列;其中正确的命题的个数是

    A.4              B.3              C.2              D.1

 

查看答案和解析>>

将数列{an}中的所有项按每组比前一组项数多一项的规则分组如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一组的第1个数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*
(I)求证:数列{
1
Sn
}成等差数列,并求出数列{bn}的通项公式;
(Ⅱ)若从第2组起,每一组中的数自左向右均构成等比数列,且公比q为同一个正数,当a18=-
2
15
时,求公比q的值;   
(Ⅲ)在(Ⅱ)的条件下,记每组中最后一数a1,a3,a6,a10,…构成的数列为{cn},设dn=n2(n-1)•cn,求数列{dn}的前n项和Tn

查看答案和解析>>


同步练习册答案