若x.y∈R+.且log2x+log2y=2 .则 + 的最小值为 查看更多

 

题目列表(包括答案和解析)

设x、y∈R,
i
j
为直角坐标平面内x、y轴正方向上的单位向量,
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点,设
OP
=
OA
+
OB
,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

设x,y∈R,
i
j
,为直角坐标平面内x轴,y轴正方向上的单位向量,若向量
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点.设
OP
=
OA
+
OB
,是否存在这样的直线l,使得四边形OAPB为菱形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

(2012•厦门模拟)本小题设有(1)(2)(3)三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知e1=
1
1
是矩阵M=
a
 1
0
 b
属于特征值λ1=2的一个特征向量.
(I)求矩阵M;
(Ⅱ)若a=
2
1
,求M10a.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,A(l,0),B(2,0)是两个定点,曲线C的参数方程为
AB
为参数).
(I)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(l,0为极点,|
AB
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.
(3)选修4-5:不等式选讲
(I)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>

i
j
为直角坐标平面内x、y轴正方向上的单位向量,若向量
p
=(x+m)
i
+y
j
q
=(x-m)
i
+y
j
,(x,y∈R,m≥2),且|
p
|-|
q
|=4

(1)求动点M(x,y)的轨迹方程?并指出方程所表示的曲线;
(2)已知点A(0,1},设直线l:y=
1
2
x-3与点M的轨迹交于B、C两点,问是否存在实数m,使得
AB
AC
=
9
2
?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

设x,y∈R,i,j为直角坐标平面内x轴、y轴正方向上的单位向量,若向量a=xi+(y+
2
)j,b=xi+(y-
2
),且|a|+|b|=4

(I)求点M(x,y)的轨迹C的方程;
(II)若轨迹C上在第一象限的一点P的横坐标为1,作斜率为
2
的直线l与轨迹C交于不同两点A、B,求△PAB面积的最大值.

查看答案和解析>>


同步练习册答案