证明: (1)a1=S1=, an=Sn-Sn–1=,且当n=1时,a1==S1, ∴an= (nN). ∵an+1-an=[4(n-1)-1]-=, ∴{an}是以为首项,为公差的等差数列. 查看更多

 

题目列表(包括答案和解析)

数列{an}中an+1+an=3n-54(n∈N*)
(1)若a1=-20,求数列的通项公式;
(2)设Sn为{an}的前n项和,证明:当a1>-27时,有相同的n,使Sn与|an+1+an|都取最小值.

查看答案和解析>>

已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)证明{an+1}是等比数列,并求an
(Ⅲ)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn

查看答案和解析>>

精英家教网设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}.
(Ⅰ)试求an+1与an的关系,并求{an}的通项公式;
(Ⅱ)当a=1,a1
1
2
时,证明
n
k=1
(ak-ak+1)ak+2
1
32

(Ⅲ)当a=1时,证明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

已知点P在曲线C:y=
1
x
(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=f(
an-1
)
(n≥2),数列{bn}满足bn=
1
an
-
k
3
,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

已知数列{an}满足 a1=2,a2=8,an+2=4an+1-4an
(1)证明{an+1-2an}是等比数列;
(2)证明{
an2n
}
是等差数列;
(3)设S=a1+a2+a3+…+a2010,求S的值.

查看答案和解析>>


同步练习册答案