题目列表(包括答案和解析)
已知关于x的方程x2-cosAcosB·x-cos2=0有一个解为1,则△ABC是
等腰三角形
直角三角形
锐角三角形
钝角三角形
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|====.
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
若在直线l上存在不同的三个点A,B,C,使得关于实数x的方程x2+x+=有解(点O不在l上),则此方程的解集为
A.{-1,0}
B.
C.
D.{-1}
若在直线l上存在不同的三个点A,B,C,使得关于实数x的方程x2+x+=0有解(点O不在l上),则此方程的解集为
A.{-1}
B.
C.
D.{-1,0}
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com