题目列表(包括答案和解析)
设函数
f(x)对于任意的x、yÎR,都有f(x+y)=f(x)+f(y)且x>0时,f(x)<0,f(1)=-2,(1)
求证f(x)是奇函数;(2)
试问在-3≤x≤3时,f(x)是否有最值,如果有,求出最值,如果没有,说明理由.设函数f(x)对于任意的x、yÎ R,都有f(x+y)=f(x)+f(y)且x>0时,f(x)<0,f(1)=-2
(1)求证f(x)是奇函数;
(2)试问在-3≤x≤3时,f(x)是否有最值,如果有,求出最值,如果没有,说明理由.
已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+对称,求b的最小值.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.
已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+对称,求b的最小值.
已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+对称,求b的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com