题目列表(包括答案和解析)
设f(x)是定义在[-1,1]上的偶函数,g(x)与f(x)的图象关于直线x=1对称,当x∈[2,3]时,g(x)=2t(x-2)-4(x-2)3(t为常数).
(1)求f(x)的表达式.
(2)当t∈时,求f(x)在[0,1]上取最大值时对应的x值;猜想f(x)在[0,1]上的单调增区间,给予证明.
(3)当t>6时,是否存在t使f(x)的图象的最高点落在直线y=12上?若存在,求t的值;若不存在说明理由.
已知函数f(x)=2sin(ωx+),x∈R,其中ω>0,-π<≤π.若函数f(x)的最小正周期为6π,且当时,f(x)取得最大值,则
f(x)在区间[-2π,0]上是增函数
f(x)在区间[-3π,π]上是增函数
f(x)在区间[3π,5π]上是减函数
f(x)在区间[4π,6π]上是增函数
已知函数,g(x)=lnx.
(1)设F(x)=f(x)+g(x),当a=2时,求F(x)在上的单调区间;
(2)在条件(1)下,若对任意(e为自然对数的底数)均有|F(x1)-F(x2)|<3m+-6恒成立,求实数m的取值范围;
(3)设G(x)=f(x)-g(x)在x=1处的切线与坐标轴围成的三角形面积为S,存在α∈N*且a≠4使得t≤S成立,求最大的整数t的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com