理解等差数列概念及推导通项公式的方法,掌握求和公式并能加以灵活应用. [双基回顾] 查看更多

 

题目列表(包括答案和解析)

记Sn是等差数列{an}前n项的和,Tn是等比数列{bn}前n项的积,设等差数列{an}公差d≠0,若对小于2011的正整数n,都有Sn=S2011-n成立,则推导出a1006=0,设等比数列{bn}的公比q≠1,若对于小于23的正整数n,都有Tn=T23-n成立,则(  )
A、b11=1B、b12=1C、b13=1D、b14=1

查看答案和解析>>

小正方形按照图中的规律排列,每个图形中的小正方形的个数构成数列{an}有以下结论,

(1)a5=15   
(2){an}是一个等差数列; 
(3)数列{an}是一个等比数列;   
(4)数列{an}的递推公式an+1=an+n+1(n∈N*
其中正确的是(  )

查看答案和解析>>

数列{an}满足递推式an=3an-1+3n-1(n≥2),又a1=5,则使得{
an3n
}
为等差数列的实数λ=
 

查看答案和解析>>

数列{an}满足递推式an=3an-1+3n-1(n≥2),其中a4=365,
(Ⅰ)求a1,a2,a3;  
(Ⅱ)若存在一个实数λ,使得{
an3n
}
为等差数列,求λ值;
(Ⅲ)求数列{an}的前n项之和.

查看答案和解析>>

(2013•红桥区二模)已知等比数列{an}的公比q≠1,a1=3,且3a2、2a3、a4成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn},b1=q,bn=3an-1+rbn-1(n≥2,n∈N*)(r为常数,且qr≠0,r≠3).
①写出b2,b3,b4
②试推测出bn用q,r,n表示的公式,并用数学归纳法证明你推测的结论.

查看答案和解析>>


同步练习册答案