三角形三边长满足.则c边的对角等于 查看更多

 

题目列表(包括答案和解析)

三角形三边长a、b、c满足(a+b+c)(a+b-c)=3ab,则c边的对角等于
60°
60°

查看答案和解析>>

三角形三边长a、b、c满足(a+b+c)(a+b-c)=3ab,则c边的对角等于________

查看答案和解析>>

(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
7
9
,周长为定值p,求面积S的最大值;
(3)为了研究边长a、b、c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,则应使sinC最大,即使∠C最大,也就是使∠C所对的边c边长最大,所以,当a?9,b?8,c?4时该三角形面积最大,此时cosC=
43
48
sinC=
455
48
,所以,该三角形面积的最大值是
3
455
4
.以上解答是否正确?若不正确,请你给出正确的解答.

查看答案和解析>>

(2005•上海模拟)(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
7
9
,周长为定值p,求面积S的最大值;
(3)为了研究边长a、b、c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,则应使sinC最大,即使∠C最大,也就是使∠C所对的边c边长最大,所以,当a?9,b?8,c?4时该三角形面积最大,此时cosC=
43
48
sinC=
455
48
,所以,该三角形面积的最大值是
3
455
4
.以上解答是否正确?若不正确,请你给出正确的解答.

查看答案和解析>>

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是    .(写出一个即可)

查看答案和解析>>


同步练习册答案