如果函数y=mx+2与y=3x-n的图象关于直线y=x对称.则 A.m=.n=6 B.m=.n= -6 C.m=3.n= -2 D.m=3.n=6 查看更多

 

题目列表(包括答案和解析)

定义:如果函数y=f(x)在区间[a,b]上存在x0(a<x0<b),满足f(x0)=
f(b)-f(a)b-a
,则称x0是函数y=f(x)在区间[a,b]上的一个均值点.已知函数f(x)=-x2+mx+1在区间[-1,1]上存在均值点,则实数m的取值范围是
(0,2)
(0,2)

查看答案和解析>>

定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=
f(b)-f(a)b-a
,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.如y=x4是[-1,1]上的平均值函数,0就是它的均值点.
(1)判断函数f(x)=-x2+4x在区间[0,9]上是否为平均值函数?若是,求出它的均值点;若不是,请说明理由;
(2)若函数f(x)=-x2+mx+1是区间[-1,1]上的平均值函数,试确定实数m的取值范围.

查看答案和解析>>

1、如果函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是
(-∞,-2)∪(6,+∞)

查看答案和解析>>

(2013•虹口区一模)如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”求出所有a的值;若不具有“P(a)性质”,请说明理由.
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)设函数y=g(x)具有“P(±1)性质”,且当-
1
2
≤x≤
1
2
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.

查看答案和解析>>

已知f(x)是二次函数,对任意x∈R都满足f(x+1)-f(x)=-2x+1,且f(0)=1.
(1)求f(x)的解析式;
(2)如果函数y=f(x)的图象恒在y=-x+m的图象下方,求实数m的取值范围;
(3)如果m∈[-1,1]时,不等式f(x)>mx+1恒成立,求实数x的取值范围.

查看答案和解析>>


同步练习册答案