2.证明:并说明什么时候取等号? (提示:用三角形法则画图证明) 查看更多

 

题目列表(包括答案和解析)

已知0<α<π,证明2sin2α≤,并指出什么时候取等号.

查看答案和解析>>

精英家教网选作题:考生任选一题作答,如果多做,则按所做的第一题计分.
A 如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(I)证明:△ABE∽△ADC
(II)若△ABC的面积S=
1
2
AD•AE
,求∠BAC的大小.
B 已知曲线C1
x=-4+cost
y=3+sint
(t为参数),C2
x=8cosθ
y=3sinθ
(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
(t为参数)距离的最小值.                
C 已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率为e=
3
3
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若
|OP|
|OM|
,求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

(2008•如东县三模)设函数f(x)=lg(
2
x+1
-1)
的定义域为集合A,函数g(x)=
1-|x+a|
的定义域为集合B.
(1)判定函数f(x)的奇偶性,并说明理由.
(2)问:a≥2是A∩B=∅的什么条件(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.

查看答案和解析>>

如果实系数a1、b1、c1和a2、b2、c2都是非零常数.
(1)设不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别是A、B,试问
a1
a2
=
b1
b2
=
c1
c2
是A=B的什么条件?并说明理由.
(2)在实数集中,方程a1x2+b1x+c1=0和a2x2+b2x+c2=0的解集分别为A和B,试问 
a1
a2
=
b1
b2
=
c1
c2
是A=B的什么条件?并说明理由.
(3)在复数集中,方程a1x2+b1x+c1=0和a2x2+b2x+c2=0的解集分别为A和B,证明:
a1
a2
=
b1
b2
=
c1
c2
是A=B的充要条件.

查看答案和解析>>


同步练习册答案