大家首先回顾一下两角和的正弦.余弦和正切公式. ,, . 思考:当=这些公式会变成怎么样呢? 查看更多

 

题目列表(包括答案和解析)

从特殊到一般和从一般到特殊,这是人们正确认识客观事物的认识规律,也是处理数学问题的重要思想方法.从这一思想出发,我们知道两角和的正弦为:sin(α+β)=sinαcosβ+cosαsinβ,那么现在我们令α=β,在这种特殊情况下我们可以得到公式sin2α=2sinαcosα,同理其余几种三角函数也可以做类似的推理,本节我们就来研究一下有关倍角的公式.你能利用上述知识解决下面的问题吗?

已知sinα=,α∈(,π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>

类比有关“两角和与差的正弦、余弦公式”的形式,对给定的两个函数S(x)=
ax-a-x
2
C(x)=
ax+a-x
2
其中a>0,且a≠1,请写出一个关于S(x)和C(x)的运算公式:
S(x+y)=S(x)C(y)+S(y)C(x),或S(x-y)=S(x)C(y)-S(y)C(x)等
S(x+y)=S(x)C(y)+S(y)C(x),或S(x-y)=S(x)C(y)-S(y)C(x)等

查看答案和解析>>

阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(2)若△ABC的三个内角A,B,C满足cos2A+cox2C-cos2B=1,直接利用阅读材料及(1)中的结论试判断△ABC的形状.

查看答案和解析>>

精英家教网山姆的意大利馅饼屋中设有一个投镖靶 该靶为正方形板.边长为18厘米,挂于前门附近的墙上,顾客花两角伍分的硬币便可投一镖并可有机会赢得一种意大利 馅饼中的一个,投镖靶中画有三个同心圆,圆心在靶的中心,当投镖击中半径为1厘米的最内层圆域时.可得到一个大馅饼;当击中半径为1厘米到2厘米之间的环域时,可得到一个中馅饼;如果击中半径为2厘米到3厘米之间的环域时,可得到一个小馅饼,如果击中靶上的其他部分,则得不到谄饼,我们假设每一个顾客都能投镖中靶,并假设每个圆的周边线没有宽度,即每个投镖不会击中线上,试求一顾客将嬴得:
(1)一张大馅饼的概率;
(2)一张中馅饼的概率;
(3)一张小馅饼的概率;
(4)没得到馅饼的概率.

查看答案和解析>>

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面积S=
1
2
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>


同步练习册答案