=e x +e – x.g(x)=e x -e – x. (1) 利用函数单调性的定义.判断f(x)在上的单调性, (2) 令.求h(x)的反函数h- 1(x). 查看更多

 

题目列表(包括答案和解析)

   (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

 

 

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?

(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

 

查看答案和解析>>

 (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

查看答案和解析>>

(本小题满分12分)
设a∈R,函数f(x)= e -x(ax2 + a + 1),其中e是自然对数的底数;
(1)求函数f(x)的单调区间;
(2)当 -1<a<0 时,求函数f(x)在 [ 1,2 ] 上的最小值。

查看答案和解析>>

(本小题满分12分)已知函数(其中e为自然对数)

(1)求F(x)="h" (x)的极值。

(2)设 (常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值。

 

查看答案和解析>>

(本小题满分12分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.

(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?

(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

 

 

 

查看答案和解析>>


同步练习册答案