提问:能否依照研究正弦.余弦函数性质的方法来研究正切函数的性质和图象? 查看更多

 

题目列表(包括答案和解析)

研究某新药的疗效,利用简单随机抽样法给100个患者服用此药,跟踪调查后得如下表的数据.
无效 有效 合计
男性患者 15 35 50
女性患者 4 46 50
合计 19 81 100
请问:
(1)请分别估计服用该药品男患者和女患者中有效者所占的百分比?
(2)是否有99%的把握认为服用此药的效果与患者的性别有关?(写出必要过程)
(3)根据(2)的结论,能否提出更好的调查方法来更准确估计服用该药的患者中有效者所占的比例?说明理由.
参考附表:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,期中n-a+b+c+d
P(K2≥k0) 0.50 0.40 0.25 0.15 0.10
k0 0.455 0.708 1.323 2.072 2.706
P(K2≥k0) 0.05 0.025 0.010 0.005 0.001
k0 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据:
身高(厘米) 192 164 172 177 176 159 171 166 182 166
脚长(码) 48 38 40 43 44 37 40 39 46 39
身高(厘米) 169 178 167 174 168 179 165 170 162 170
脚长(码) 43 41 40 43 40 44 38 42 39 41
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表.
(2)根据(1)中的2×2列联表,若按99%可靠性要求,能否认为脚的大小与身高之间有关系.
高个 非高个 合计
大脚
非大脚 12
合计 20

查看答案和解析>>

(2013•唐山二模)某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)4名成员随机分成两组,每组2人,一组负责收集成绩,另一组负责数据处理.求学生甲分到负责收集成绩组,学生乙分到负责数据处理组的概率.
p(K2≥k0 0.010 0.005 0.001
k0 6.635 7.879 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.
(1)小于5的自然数;
(2)某班所有个子高的同学;
(3)不等式2x+1>7的整数解.

查看答案和解析>>

经研究发现,学生的接受能力依赖于老师引入概念和描述总量所用的时间,开始讲题时,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x表示提出和讲授概念的时间(单位:分),有以下的公式:
f(x)=
0.1x2+2.6x+43,(0<x≤10)
59,(10<x≤16)
-3x+107,(16<x≤30)

(1)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强呢?
(2)开讲后多少分钟,学生的接受能力最强?能维持多长的时间?
(3)若讲解这道数学题需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲完这道题?

查看答案和解析>>


同步练习册答案