已知A={x|2≤x≤π}.定义在A上的函数y=logax(a>0且a≠1)的最大值比最小值大1.则底数a的值为 A. B. C.π-2 D. 或 查看更多

 

题目列表(包括答案和解析)

已知A={x|2≤xπ},定义在A上的函数y=logaxa>0且a≠1)的最大值比最小值大1,则底数a的值为

A.    B. C.π-2  D.

查看答案和解析>>

精英家教网定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则
b+2
a+2
的取值范围是(  )
A、(
1
3
1
2
)
B、(-∞,
1
2
)∪(3,+∞)
C、(
1
2
,3)
D、(-∞,-3)

查看答案和解析>>

精英家教网定义在R上的函数f(x)满足f(4)=1.f'(x)为f(x)的导函数,已知函数y=f'(x)的图象如右图所示.若两正数a,b满足f(2a+b)<1,则
b+2
a+2
的取值范围是(  )
A、(
1
3
1
2
)
B、(
1
2
,+∞
C、(
1
2
,3)
D、(3,+∞)

查看答案和解析>>

定义在D上的函数,如果满足:存在常数M>0,对任意x∈D都有|f(x)|≤M成立,则称f(x)是D上的有界函数.
(1)试判断函数f(x)=2sin(x+
π
6
)+3
在实数集R上,函数g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函数?若是,请给出证明;若不是,请说出理由.
(2)若已知某质点的运动距离S与时间t的关系为S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一时刻的瞬时速度的绝对值都不大于13,求实数a的取值范围.

查看答案和解析>>

定义在D上的函数f(x),如果满足;对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•2x+4x,g(x)=
1-m•2x1+m•2x

(1)当a=1时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由;
(2)若函数f(x)在(-∞,0]上是以3为上界的函数,求实数a的取值范围;
(3)若m>0,求函数g(x)在[0,1]上的上界T的取值范围.

查看答案和解析>>


同步练习册答案