若.试确定的符号. 查看更多

 

题目列表(包括答案和解析)

=0,试确定sin(cosα)的符号.

查看答案和解析>>

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,男、女生各抽取多少名才符合抽样要求?
(2)随机抽出8名,他们的数学、物理分数对应如下表:
学生编号 1 2 3 4 5 6 7 8
数学分数x 60 65 70 75 80 85 90 95
物理分数y 72 77 80 84 88 90 93 95
(i)若规定85分以上为优秀,在该班随机调查一名同学,他的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,说明理由.
参考公式:相关系数r=
n
i=a
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)2

回归直线的方程是:
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,a=
.
y
-b
.
x
yi
是与xi对应的回归估计值.

查看答案和解析>>

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(I)如果按性别比例分层抽样,男、女生各抽取多少名才符合抽样要求?
(II)随机抽出8名,他们的数学、物理分数对应如下表:
学生编号 1 2 3 4 5 6 7 8
数学分数x 60 65 70 75 80 85 90 95
物理分数y 72 77 80 84 88 90 93 95
(i)若规定85分以上(包括85分)为优秀,在该班随机调查一名同学,他的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,说明理由.
参考公式:相关系数r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2

回归直线的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a=
.
y
-b
.
x
?
y
i
是与xi对应的回归估计值.
参考数据:
.
x
=77.5,
.
y
=84.875
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(yi-
.
y
)
2
≈457
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
457
≈21.4
550
≈23.5

查看答案和解析>>

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(I)如果按性别比例分层抽样,男、女生各抽取多少名才符合抽样要求?
(II)随机抽出8名,他们的数学、物理分数对应如下表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
(i)若规定85分以上(包括85分)为优秀,在该班随机调查一名同学,他的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,说明理由.
参考公式:相关系数
回归直线的方程是:,其中是与xi对应的回归估计值.
参考数据:

查看答案和解析>>

(本小题满分12分)

已知函数)的图象在

处的切线与轴平行.

(1) 试确定的符号;

(2) 若函数在区间上有最大值为,试求的值.

 

查看答案和解析>>


同步练习册答案