在中.已知.若利用正弦定理解有两解.则的取值范围是 A B C D 查看更多

 

题目列表(包括答案和解析)

(2012•湖南模拟)选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要的推理与演算过程)
(1)如图,已知Rt△ABC的两条直角边BC,AC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,试求BD的长.
(2)已知曲线C的参数方程为
x=1+cosθ
y=sinθ
(θ为参数),求曲线C上的点到直线x-y+1=0的距离的最大值.
(3)若a,b是正常数,a≠b,x,y∈(0,+∞),则
a2
x
+
b2
y
(a+b)2
x+y
,当且仅当
a
x
=
b
y
时上式取等号.请利用以上结论,求函数f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

(2012•福州模拟)本题有(1)、(2)、(3)三个选做题,每题7分,请考生任选2题作答,满分l4分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填人括号中.
(1)选修4-2:矩阵与变换
利用矩阵解二元一次方程组
3x+y=2
4x+2y=3

(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=1.圆的参数方程为
x=1+rcosq
y=1+rsinq
(θ为参数,r>0),若直线l与圆C相切,求r的值.
(3)选修4-5:不等式选讲
已知a2+b2+c2=1(a,b,c∈R),求a+b+c的最大值.

查看答案和解析>>

关于统计数据的分析,以下几个结论,其中正确的个数为( )

①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高

将一组数据中的每个数据都减去同一个数后,期望与方差没有变化;

调查剧院中观众观后感时,从50(每排人数相同)中任意抽取一排的人进行调查分层抽样

已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)0.682 6,则P(X>4)等于0.158 7

某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为15人。

A2 B3 C4 D5

 

查看答案和解析>>

选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要的推理与演算过程)
(1)如图,已知Rt△ABC的两条直角边BC,AC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,试求BD的长.
(2)已知曲线C的参数方程为数学公式(θ为参数),求曲线C上的点到直线x-y+1=0的距离的最大值.
(3)若a,b是正常数,a≠b,x,y∈(0,+∞),则数学公式+数学公式数学公式,当且仅当数学公式=数学公式时上式取等号.请利用以上结论,求函数f(x)=数学公式+数学公式(x∈0,数学公式)的最小值.

查看答案和解析>>

(本题满分12分)已知函数

(1)求的最小正周期;

(2)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值。

【解析】第一问中主要利用三角函数的两角和差公式化简为单一三角函数解析式

=

然后利用周期公式得到第一问。

第二问中,由于的图象向右平移个单位,得到函数的图象,

 

然后时,结合三角函数值域求解得到范围。

 

查看答案和解析>>


同步练习册答案