2.定义:平面向量数量积的定义.a×b = |a||b|cosq. 并规定0与任何向量的数量积为0.× 查看更多

 

题目列表(包括答案和解析)

出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
e1
e2
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
a
,则存在唯一的一对实数λ,μ,使得
a
=λ
e1
e2
,我们就把实数对(λ,μ)称作向量
a
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
i
j
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
i
j
>=
π
3

(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i
j
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
a
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.

查看答案和解析>>

定义平面向量之间的一种运算“*”如下:对任意的
a
=(m,n),
b
=(p,q)
,令
a
?
b
=mq-np
.给出以下四个命题:(1)若
a
b
共线,则
a
?
b
=0
;(2)
a
?
b
=
b
?
a
;(3)对任意的λ∈R,有
a
)?
b
=λ(
a
?
b
)
;(4)(
a
*
b
2
+(
a
b
2
=|
a
|2?|
b
|2
.(注:这里
a
?
b
a
b
的数量积)其中所有真命题的序号是
 

查看答案和解析>>

定义平面向量之间的一种运算“*”如下:对任意的
a
=(m,n),
b
=(p,q)
,令
a
*
b
=mq-np
.给出以下四个命题:(1)若
a
b
共线,则
a
*
b
=0
;(2)
a
*
b
=
b
*
a
;(3)对任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)
(4)(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
.(注:这里
a
b
a
b
的数量积)则其中所有真命题的序号是(  )
A、(1)(2)(3)
B、(2)(3)(4)
C、(1)(3)(4)
D、(1)(2)(4)

查看答案和解析>>

定义平面向量之间的一种运算“*”如下:对任意的,令。给出以下四个命题:(1)若共线,则;(2);(3)对任意的,有;(4)

(注:这里的数量积)

则其中所有真命题的序号是(     )

(A)(1)(2)(3)   (B)(2)(3)(4)   (C)(1)(3)(4)    (D)(1)(2)(4)

 

查看答案和解析>>

定义平面向量之间的一种运算“*”如下:对任意的,令.给出以下四个命题:(1)若共线,则;(2);(3)对任意的λ∈R,有;(4)=.(注:这里的数量积)其中所有真命题的序号是   

查看答案和解析>>


同步练习册答案