题目列表(包括答案和解析)
(1)已知sin+cos=(0<<π),求tan及sin3-cos3的值.
(2)在上面的题目中,直接给出了已知sinα±cosα的值,然后利用sinα±cosα与sinα·cosα的关系使题目得到解决.本题也可以变换条件,由于sinα、cosα和差与积有一定的关系,因此,也可以将它们与一元二次方程联系在一起.例如:关于x的方程2x2-(+1)x+m=0的两根为sinα和cosα,且α∈(0,2π),
(1)求+的值;
(2)求m的值;
(3)求方程的两根及此时的角α.
已知函数y=f(x)对于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com