题目列表(包括答案和解析)
x2-mx+1 | x |
17.证明:假设f(x)至少有两个零点。不妨设有两个零点与,则f()=0,f()=0
所以f()=f()与已知f(x)是单调函数矛盾,所以假设错误,因此f(x)在其定义域上是单调函数证明f(x)至多有一个零点
一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数X的概率分布。
(1)每次取出的产品不再放回去;
(2)每次取出的产品仍放回去;
(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.
x2-mx+1 |
x |
7、9、10班同学做乙题,其他班同学任选一题,若两题都做,则以较少得分计入总分.
(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然对数的底数,a∈R.
(1)若a=-1,求f(x)的极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
(乙)定义在(0,+∞)上的函数,其中e=2.718 28…是自然对数的底数,a∈R.
(1)若函数f(x)在点x=1处连续,求a的值;
(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围;并判断此时函数f(x)在(0,+∞)上是否为单调函数;
(3)当x∈(0,1)时,记g(x)=lnf(x)+x2-ax. 试证明:对,当n≥2时,有
x | 1 | 2 | 3 |
f(x) | 1 | 3 | 1 |
x | 1 | 2 | 3 |
g(x) | 3 | 2 | 1 |
则f[g(1)]=_________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com