题目列表(包括答案和解析)
已知点,点A、B分别在x轴负半轴和y轴上,且?=0,点满足,当点B在y轴上移动时,记点C的轨迹为E。
(1)求曲线E的方程;
(2)过点Q(1,0)且斜率为k的直线交曲线E于不同的两点M、N,若D(,0),且?>0,求k的取值范围。
AP |
OB |
|PB| |
已知A(1,0),B(-2,0),动点M满足∠MBA=2∠MAB(∠MAB≠0).
(1)求动点M的轨迹E的方程;
(2)若直线l:y=k(x+7),且轨迹E上存在不同两点C.D关于直线l对称.
①求直线l斜率k的取值范围;
②是否可能有A、B、C、D四点共圆?若可能,求实数k取值的集合;若不可能,请说明理由.
如图,椭圆E:(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足+=t(O为坐标原点),当|-|<时,求实数t的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com