4.若b>a>0.且tan a =.sin a =.则a 的集合是. (A){a | 0<a <} (B){a |+2k pap+2k p.k∈Z} (C){a |2k pap+2k p.k∈Z} (D){a |+2k p<a<p+2k p.k∈Z [提示]由已知.tan a <0.sin a >0 .且ab.即0.故a 是第二象限角. [答案](D). [点评]本题考查由三角函数值的符号确定角所在的象限. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,其右准线l与x轴的交点为T,过椭圆的上顶点A作椭圆的右准线l的垂线,垂足为D,四边形AF1F2D为平行四边形.
(1)求椭圆的离心率;
(2)设线段F2D与椭圆交于点M,是否存在实数λ,使
TA
TM
?若存在,求出实数λ的值;若不存在,请说明理由;
(3)若B是直线l上一动点,且△AF2B外接圆面积的最小值是4π,求椭圆方程.

查看答案和解析>>

已知A(1,0),B(4,0),动点T(x,y)满足
|TA|
|TB|
=
1
2
,设动点T的轨迹是曲线C,直线l:y=kx+1与曲线C交于P,Q两点.
(1)求曲线C的方程;
(2)若
OP
OQ
=-2
,求实数k的值;
(3)过点(0,1)作直线l1与l垂直,且直线l1与曲线C交于M,N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

设双曲线C:
x2
2
-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且
A1P
A2Q
=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设
FA
=λ•
FB
,若λ∈[-2,-1],求|
TA
+
TB
|(T为(1)中的点)的取值范围.

查看答案和解析>>

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61.
(1)求
a
b
的夹角θ;
(2)若
c
=t
a
+(1-t)
b
,且
b
c
=0,求t及|
c
|

查看答案和解析>>

已知椭圆C的中心在原点,对称轴为坐标轴,且过(0,1),(1,
2
2
).
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:3x-3y-1=0交椭圆C与A、B两点,若T(0,1)求证:|
TA
+
TB
|=|
TA
-
TB
|

查看答案和解析>>


同步练习册答案