在 a与b(ab)两数之间插入n个数使它们与a. b组成等差数列.则此数列的公差为 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

以下四个关于圆锥曲线的命题中:
①双曲线
x2
16
-
y2
9
=1
与椭圆
x2
49
+
y2
24
=1
有相同的焦点;
②在平面内,设A、B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
④过双曲线x2-
y2
2
=1
的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为
①④
①④
(写出所有真命题的序号).

查看答案和解析>>

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

某市现有自市中心O通往正西和东北方向的两条主要公路,为了解决交通拥挤问题,市政府决定修一条环城路,分别在通往正西和东北方向的公路上选取A、B两点,使环城公路在A、B间为线段,要求AB环城路段与中心O的距离为10 km,且使A、B间的距离|AB|最小,请你确定A、B两点的最佳位置(不要求作近似计算)

查看答案和解析>>


同步练习册答案