14.一直角三角形的三边长可构成等差数列.则最小内角为 . 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知直角的三边长,满足 

(1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;

(2)已知成等比数列,若数列满足,证明数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

 

查看答案和解析>>

(本小题满分12分)已知直角的三边长,满足 
(1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(2)已知成等比数列,若数列满足,证明数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

查看答案和解析>>

(本小题满分12分)已知直角的三边长,满足 
(1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(2)已知成等比数列,若数列满足,证明数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

查看答案和解析>>

已知直角△ABC的三边长a,b,c,满足a≤b<c
(1)在a,b之间插入2011个数,使这2013个数构成以a为首项的等差数列{an },且它们的和为2013,求c的最小值;
(2)已知a,b,c均为正整数,且a,b,c成等差数列,将满足条件的三角形的面积从小到大排成一列S1,S2,S3,…Sn,且数学公式,求满足不等式数学公式的所有n的值;
(3)已知a,b,c成等比数列,若数列{Xn}满足数学公式(n∈N+),证明:数列{数学公式 }中的任意连续三项为边长均可以构成直角三角形,且Xn是正整数.

查看答案和解析>>

已知直角的三边长,满足

(1)在之间插入2011个数,使这2013个数构成以为首项的等差数列,且它们的和为,求的最小值;

(2)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;

(3)已知成等比数列,若数列满足,证明:数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

 

查看答案和解析>>


同步练习册答案