5.已知.则当函数取最大值时.求自变量的集合. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=ax2-2
4+2b-b2
x,g(x)=-
1-(x-a)2
,a,b∈R

(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x0,使得f(x0)是f(x)的最大值,且g(x0)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

设函数数学公式
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x0,使得f(x0)是f(x)的最大值,且g(x0)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

设函数f(x)=ax2-2
4+2b-b2
x,g(x)=-
1-(x-a)2
,a,b∈R

(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x0,使得f(x0)是f(x)的最大值,且g(x0)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>


同步练习册答案