解: ∵∴①-------- ∵A.B.C三点在同一直线上 ∴存在唯一的实数使得---------- ---------- --------- ∴----------------- 消去得到----②------- 由①得到.代入②解得 或 查看更多

 

题目列表(包括答案和解析)

已知A、B、C是直线l上不同的三点,O是l外一点,向量
OA
OB
OC
满足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.记y=f(x).
(Ⅰ)求函数y=f(x)的解析式:
(Ⅱ)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求实数a的取值范围:
(Ⅲ)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:.记y=f(x).
(Ⅰ)求函数y=f(x)的解析式:
(Ⅱ)若对任意,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求实数a的取值范围:
(Ⅲ)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

已知A、B、C是直线l上的不同的三点,O是直线外一点,向量满足,记y=f(x).
(1)求函数y=f(x)的解析式;
(2)若,证明:不等式|a-lnx|>ln[f′(x)-3x]成立;
(3)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

已知A、B、C是直线l上的不同的三点,O是直线外一点,向量满足,记y=f(x).
(1)求函数y=f(x)的解析式;
(2)若,证明:不等式|a-lnx|>ln[f′(x)-3x]成立;
(3)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

已知ABC是直线l上不同的三点,Ol外一点,向量满足:

yf(x).  

(1)求函数yf(x)的解析式:

(2)若对任意不等式|a-lnx|-ln[f '(x)-3x]>0恒成立,求实数a的取值范围:

(3)若关于x的方程f(x)=2xb在[0,1]上恰有两个不同的实根,求实数b的取值范围.

 

 

查看答案和解析>>


同步练习册答案