下列命题: ①方程的解集为, ②方程x2+x-6=0的解集为{}, ③集合A={y |y=x2+1}与集合B={(x,y)|y=x2+1 }表示同一集合, ④方程组的解集为{(x,y) |x=-1,y=2}, 其中真命题的个数是 A.1个 B.2个 C.3个 D.4个 查看更多

 

题目列表(包括答案和解析)

16、给出下列命题:
①关于x的的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是
②③④

查看答案和解析>>

给出下列命题:
①关于x的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是______.

查看答案和解析>>

给出下列命题:
①关于x的不等式(a-2)x2+(a-2)x+1>0的解集为R的充要条件是2<a<6;
②我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{1,3,5,7,9}的“孙集”有26个.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)无实数根,则方程f[f(x)]=x也一定没有实数根;
④若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列.
其中正确命题的序号是   

查看答案和解析>>

下列命题:
①终边在坐标轴上的角的集合是{α|α=
2
,k∈Z};
②若2sinx=1+cosx,则tan
x
2
必为
1
2

③ab=0,asinx+bcosx=
a2+b2
sin(x+φ),(|φ|<π)中,若a>0,则φ=arctan
b
a

④函数y=sin(
1
2
x-
π
6
)在区间[-
π
3
11π
6
]上的值域为[-
3
2
2
2
];
⑤方程sin(2x+
π
3
)-a=0在区间[0,
π
2
]上有两个不同的实数解x1,x2,则x1+x2=
π
6

其中正确命题的序号为
①③⑤
①③⑤

查看答案和解析>>

下列命题:
①终边在坐标轴上的角的集合是{α|α=
2
,k∈Z};
②若2sinx=1+cosx,则tan
x
2
必为
1
2

③ab=0,asinx+bcosx=
a2+b2
sin(x+φ),(|φ|<π)中,若a>0,则φ=arctan
b
a

④函数y=sin(
1
2
x-
π
6
)在区间[-
π
3
11π
6
]上的值域为[-
3
2
2
2
];
⑤方程sin(2x+
π
3
)-a=0在区间[0,
π
2
]上有两个不同的实数解x1,x2,则x1+x2=
π
6

其中正确命题的序号为______.

查看答案和解析>>


同步练习册答案