使得:y= 有 意 义 的x的取值范围 A.-3≤x≤1.5 B.–2.5< x≤3 C.-3≤x< -2.5或1.5< x≤3 D .-3≤x≤ 3 查看更多

 

题目列表(包括答案和解析)

定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.数列{an}满足an=1-3k,f(an+1)=
(1)求f(0)的值,并证明f(x)是定义域上的增函数:
(2)求数列{an}的通项公式;
(3)设0<a<bnSn为数列{an}的前n项和,是否存在实数k,使得对任意正整数n,都有a<Sn<b?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线?:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线?:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线?:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线?:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.

查看答案和解析>>

(本题总分14分)已知函数ax2+x-3,g(x)=-x+4lnx

h(x)=-g(x)

(1)当a=1时,求函数h(x)的极值。

(2)若函数h(x)有两个极值点,求实数a的取值范围。

(3)定义:对于函数F(x)和Gx),若存在直线l:y=kx+b,使得对于函数F(x)和

Gx)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线l:y=kx+b为函数F(x)和G(x)的“隔离直线”。则当a=1时,函数g(x)是否存在“隔离直线”。若存在,求出所有的“隔离直线”。若不存在,请说明理由。

查看答案和解析>>

已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线?:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线?:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案