已知P为三角形ABC所在的平面外一点.D是AB的中点.并且PD=12.PA=PB,DC=5,PC=13,求证:直线PD平面ABC 查看更多

 

题目列表(包括答案和解析)

  如图,已知点P是三角形ABC外一点,且底面

,点分别在棱上,且 。  。 

(1)求证:平面

(2)当的中点时,求与平面所成的角的大小;

(3)是否存在点使得二面角为直二面角?并说明理由.

 

查看答案和解析>>

 如图,已知点P是三角形ABC外一点,且底面
,点分别在棱上,且 。 。 

(1)求证:平面
(2)当的中点时,求与平面所成的角的大小;
(3)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

已知O,N,P在△ABC所在平面内,且||=||=||,,且,则点O,N,P依次是△ABC的

(注:三角形的三条高线交于一点,此点为三角型的垂心)

[  ]

A.重心 外心 垂心

B.重心 外心 内心

C.外心 重心 垂心

D.外心 重心 内心

查看答案和解析>>

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

已知O,N,P在△ABC所在平面内,且,且,则点O,N,P依次是△ABC的(注:三角形的三条高线交于一点,此点为三角形的垂心)

[  ]

A.重心 外心 垂心

B.重心 外心 内心

C.外心 重心 垂心

D.外心 重心 内心

查看答案和解析>>


同步练习册答案