给出1.2.3.4四个数字.试问:(1)可组成多少个数字不重复的四位数?(2)可组成多少个数字不重复的自然数?(3)可组成多少个不超过四位的自然数? 查看更多

 

题目列表(包括答案和解析)

在整数集Z中,称被5除所得的余数为k的所有整数组成一个“k类”,记为[k],即[k]={x|x=5n+k,n∈Z},k=0,1,2,3,4.现给出如下四个结论:
①2011∈[1];
②-4∈[4];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④设a,b∈Z,则a,b∈[k]?a-b∈[0].
其中,正确结论的序号是
①③④
①③④

查看答案和解析>>

16、给出下列四个命题:
①已知集合A⊆{1,2,3,4},且A中至少含有一个奇数,则这样的集合A有12个;
②任意的三角形ABC中,有cos2A<cos2B的充要条件是A>B;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角;
其中真命题的序号是
①②
(要求写出所有真命题的序号).

查看答案和解析>>

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2013∈[3];
②-2∈[2];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④当且仅当“a-b∈[0]”整数a,b属于同一“类”.
其中,正确结论的个数为.(  )
A、1B、2C、3D、4

查看答案和解析>>

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];   
②-3∈[3];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的是
①③④
①③④

查看答案和解析>>

某老板拟赞助甲,乙,丙,丁四位年轻人创业,现聘请了六位实业家,独立地对每位年轻人的创业方案进行投票,假设这六位实业家对甲,乙,丙,丁投票结果为“赞成”的概率分别为
1
6
1
4
1
3
3
4
,若某年轻人没有人“赞成”,则老板只赞助他1万元,且每多获得一个人的“赞成”,就多给2万元的创业赞助;令ξ1,ξ2,ξ3,ξ4分别表示甲,乙,丙,丁获得的赞助额.
(1)写出ξ3的分布列和ξ3的数学期望与方差;(相应概率可用组合数表示)
(2)试估计这位老板的赞助总额.

查看答案和解析>>


同步练习册答案