题目列表(包括答案和解析)
放缩法
证明不等式时,通常把不等式中的某些部分的值_________或_________,简化不等式,从而达到证明的目的.我们把这种方法称为放缩法.
已知数列的前项和为,且 (N*),其中.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由得. ……2分
若存在由得,
从而有,与矛盾,所以.
从而由得得. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一. ……10分
证法三:(利用对偶式)设,,
则.又,也即,所以,也即,又因为,所以.即
………10分
证法四:(数学归纳法)①当时, ,命题成立;
②假设时,命题成立,即,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
已知正项数列的前n项和满足:,
(1)求数列的通项和前n项和;
(2)求数列的前n项和;
(3)证明:不等式 对任意的,都成立.
【解析】第一问中,由于所以
两式作差,然后得到
从而得到结论
第二问中,利用裂项求和的思想得到结论。
第三问中,
又
结合放缩法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正项数列,∴ ∴
又n=1时,
∴ ∴数列是以1为首项,2为公差的等差数列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 对任意的,都成立.
(本小题满分14分,每小题7分)
(Ⅰ)设函数,如果,,求的取值范围.
(Ⅱ)用放缩法证明不等式:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com