若满足.则有 ( ) A. 最小值和最大值1 B. 最小值和最大值1 C. 最小值.无最大值 D. 最大值1.无最小值 查看更多

 

题目列表(包括答案和解析)

若实数m、n满足,则(1+mn)(1-mn)有

[  ]

A.最小值和最大值1

B.最小值而无最大值

C.最大值1而无最小值

D.最大值1和最小值

查看答案和解析>>

设函数f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常数且a∈(0,1).
(1)当a=
1
2
时,求f(f(
1
3
));
(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

(2013•江西)设函数f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常数且a∈(0,1).
(1)当a=
1
2
时,求f(f(
1
3
));
(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
7
9
,周长为定值p,求面积S的最大值;
(3)为了研究边长a、b、c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,则应使sinC最大,即使∠C最大,也就是使∠C所对的边c边长最大,所以,当a?9,b?8,c?4时该三角形面积最大,此时cosC=
43
48
sinC=
455
48
,所以,该三角形面积的最大值是
3
455
4
.以上解答是否正确?若不正确,请你给出正确的解答.

查看答案和解析>>

设函数f(x)=a为常数且a∈(0,1).
(1)当a=时,求f
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[]上的最大值和最小值.

查看答案和解析>>


同步练习册答案