9.已知指数函数在上的函数值小于3.则的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lg[H(x)],且H(x)=
x2+3x+6x+1

(1)求函数f(x)的定义域;
(2)求函数f(x)在区间[2,4]上的最小值;
(3)已知m∈R,命题p:关于x的不等式H(x)≥m2+2m-3对函数f(x)的定义域上的任意x恒成立;命题q:指数函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

已知函数f(x)=lg[H(x)],且H(x)=
x2+3x+6
x+1

(1)求函数f(x)的定义域;
(2)求函数f(x)在区间[2,4]上的最小值;
(3)已知m∈R,命题p:关于x的不等式H(x)≥m2+2m-3对函数f(x)的定义域上的任意x恒成立;命题q:指数函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

已知奇函数时,取极小值

   (1)求的解析式;

   (2)试判断:当的图象上是否存在两点,使这两点处的切线的夹角等于45°

   (3)试判断方程上是否有解?若有,指出解的个数,若没有.说明理由.

查看答案和解析>>

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

查看答案和解析>>

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

查看答案和解析>>


同步练习册答案