题目列表(包括答案和解析)
在中,满足,是边上的一点.
(Ⅰ)若,求向量与向量夹角的正弦值;
(Ⅱ)若,=m (m为正常数) 且是边上的三等分点.,求值;
(Ⅲ)若且求的最小值。
【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则
令=,得,又,则为所求
第二问因为,=m所以,
(1)当时,则=
(2)当时,则=
第三问中,解:设,因为,;
所以即于是得
从而
运用三角函数求解。
(Ⅰ)解:设向量与向量的夹角为,则
令=,得,又,则为所求……………2分
(Ⅱ)解:因为,=m所以,
(1)当时,则=;-2分
(2)当时,则=;--2分
(Ⅲ)解:设,因为,;
所以即于是得
从而---2分
==
=…………………………………2分
令,则,则函数,在递减,在上递增,所以从而当时,
已知
(1)求;
(2)求向量在向量方向上的投影.
【解析】第一问利用向量的数量积公式可知
,然后利用数量积的性质求解
第二问中,先求解,然后利用投影的定义得到向量在向量方向上的投影即为=
设是直角坐标系中,x轴、y轴正方向上的单位向量,设
(1)若(,求.
(2)若时,求的夹角的余弦值.
(3)是否存在实数,使,若存在求出的值,不存在说明理由.
【解析】第一问中,利用向量的数量积为0,解得为m=-2
第二问中,利用时,结合向量的夹角的余弦值公式解得
第三问中,利用向量共线,求解得到m不存在。
(1)因为设是直角坐标系中,x轴、y轴正方向上的单位向量,设
(2)因為
即;
(3)假設存在实数,使,則有
因此不存在;
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量
(Ⅰ)求角A的大小;
(Ⅱ)若,试判断b·c取得最大值时△ABC形状.
【解析】本试题主要考查了解三角形的运用。第一问中利用向量的数量积公式,且由
(2)问中利用余弦定理,以及,可知,并为等边三角形。
解:(Ⅰ)
………………………………6分
(Ⅱ)
………………………………8分
……………10分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com