求曲线的方程的一般步骤是: (1) 建立 的坐标系.用 表示曲线上任意一点的坐标 (2) 写出适合条件P的点M的集合P= (3) 用 表示条件P=0 =0为 形式 (5) 证明已化简后的方程的解为坐标的点都是 上的点 查看更多

 

题目列表(包括答案和解析)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

在平面直角坐标系xoy 中,点M 到两定点F1(-1,0)和F2(1,0)的距离之和为4,设点M 的轨迹是曲线C.
(1)求曲线C 的方程; 
(2)若直线l:y=kx+m 与曲线C 相交于不同两点A、B (A、B 不是曲线C 和坐标轴的交点),以AB 为直径的圆过点D(2,0),试判断直线l 是否经过一定点,若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

已知一曲线是与两个定点距离的比为的点的轨迹,求此曲线的方程,并判断曲线的形状. 

查看答案和解析>>

(08年潍坊市七模) (12分)在Rt△ABC中,∠CAB=90°,AB=2,AC,一曲线EC点,动点P在曲线E上运动,且保持的值不变.

  (1)建立适当的坐标系,求曲线E的方程;

  (2)直线l与曲线E交于MN两点,求四边形MANB的面积的最大值.

查看答案和解析>>


同步练习册答案